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I1 EXECUTIVE SUMMARY

I PURPOSE AND SCOPE

The work presented in this report was performed under Subtask 4 of Task Order 33 of

the SDIO Systems SETA contract. The purpose of the subtask was to develop a plan for the

introduction of software measurement into the SDS development program. Sparta was the

technical lead on the subtask, with support from Teledyne Brown and TASC.

I The subtask was broken into two phases. The first phase focused on a review of the
results of Subtasks 1, 2, and 3, which presented SDS Software Measurement requirement,
models, and tools, and near term efforts to advance SDS Software Measurement plans. The

second phase focused on the definition of activities that provide for a stronger foundation for the

program in the longer term, with an emphasis on model development.

I REVIEW OF REQUIREMENTS, METRICS, TOOLS

The primary purpose of software metrics is to predict, throughout the software

development phase, what the quality and overall schedule and cost of the final product will be.
This prediction process is to be integrated with the standard review and audit activities of existing

I software development methodologies for the SDS. As a basis for quality prediction, nine quality
factors were defined. Lines of code, or function points, were the primary basis for productivity
predictions. The SDS software was decomposed into 36 different software application domains,

in order to produce more homogeneous groupings for prediction purposes. A framework
methodology requirement was defined, consisting of specification, estimation, evaluation, and

tuning phases.

The collection of software metrics available for use proved, as was expected, to be
concentrated late in the software development life cycle, often with no formal foundations.

Productivity models and supporting tools are more mature than quality-oriented models and tools;
COCOMO and its variations are in widespread use. While not being oriented toward prediction,

the software quality and management indicators standardized by the Army and Air Force can assist

in providing early and consistent software productivity and quality statistics. A movement toward

ES-I , A
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I a multi-a'tribute vector representation of quality factors is identified. Specific tools packages which

are applicable to SDS needs are "SMART" (Software Management and Reporting Tool) and

I "SMERFS" (Statistical Modeling and Estimation of Reliability Functions for Software).

I NEAR TERM ACTIVITIES

To support the introduction of software measurement into SDS software development, a

review of the conclusions and proposals presented in TR-9033-1 and TR-9033-2 is proposed. A

series of briefings, with audience feedback, is defined to present the SDS Software Measurement

materials to major SDS contractors and associated Government personnel. The intent is both to

educate the audience on SDIO plans in this area, and to profit from their evaluations of the SDS
Software Measurement approach, based on their unique experiences and knowledge.

Based on the set of candidate software metrics models and tools previously identified, an
initial measurement system should be developed for SDS. The system would be used to perform

initial experiments in software characteristics prediction, with a small number of software

development efforts. Cost, schedule, and reliability predictions would the the focus of initial

experiments with the system.

LONGER TERM ACTIVITIES

Using the initial SDS Software Measurement System for experiments to gain experience

is a necessary precursor to future SDS Software Measurement activities. From the results of the

experiments, and the already recognized software metrics areas of deficiencies, requirements

would be identified for the next phase of development. These requirements would include models

for reliability, integrity, portability, usability, and reusability. One promising area of development

appears to be in multi-variate vector metrics, a- it has been successfully applied to the field of

general systems optimization modelling.

I
I
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SIl In addition, the measurement methodology itself would be more completely defined.

This definition would include definition of SDS software development methodology to include

prototyping methodology. The software measurement methodology would be fully integrated with

the expanded development methodology. The redefinition would also include further development3 lof the software development methodology to incorporate methodologies for rating quality, model

tuning, and metrics selection. Finally, an integrated system of automated tools would beI developed to support the entire suite of SDS Software Measurement functions.

I
I
I
I
I
I
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I 0. INTRODUCTION

3 This document presents the tasks to be accomplished in order to define a program of

software measurement for SDS development, and to introduce that program into the SDS program.

5 The plan focuses on both near term and longer term tasks necessary to initiate and maintain a viable

software measurement program for the SDS. Near term tasks are oriented toward review,

assimilation, and refinement of a proposed SDS Software Measurement approach, and use of

existing software metrics tools. Longer term tasks target modelling of software development life

cycles and definition of additional metrics development, validation, and automated implementation.

Section 1 discusses the importance of software measurement in supporting SDS software5 development. Section 2 reviews the findings of TR-9033-1 (SDS Software Measurement

Requirements) and TR-9033-2 (Evaluation of Software Measurement Processes and Software3 Measurement Support). It also lists near-term activities to be undertaken to move the SDS

Software Measurement program forward. Section 3 presents longer term activities, including

additional software metrics validation and integration, and development of automated tools and

databases. Appendix A presents a multi-metric measurement model with a formal mathematical

I foundation.

I
m
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ISDS SOFTWARE MEASUREMENT
GOALS/OBJECTIVES

Software measurement is recognized as an important contributor to the successful

development of the Strategic Defense System (SDS). While the exact extent of the software

necessary to define, simulate, prototype, implement, test, deploy, and maintain the SDS is not

known, a common indicator of the scope of the effort has been the estimate of between 10 and 90

million lines of code. This is a daunting number, even to those who previously developed large£ systems.

Size is not the only challenging aspect of SDS software development. Necessarily

distributed across many years, it also will likely be accomplished by several dozens of individual

contractors and subcontractors. In addition, the SDS encompasses a broad collection of differing

functions, ranging from mundane (accounting, formatting tools, etc ) to esoteric (nuclear

detonation detection/analysis, interceptor guidance, etc.). Some needs will be met by off-the-shelf

software products; others will require extended development. During the period of development.

neither development technology, system design, nor hardware base can be expected to remain
static. New technology must be planned for and accommodated within the SDS development

3 plans.

5 One other characteristic of the SDS has a major impact on software development. SDS

mission critical software must perform as designed. The consequences of SDS software failing to

perform, or performing correctly, but under the incorrect circumstances, could be catastrophic.

Thus, the criticality of the mission requires the most reliable, correct software we c'rn build. The

costs of errors in that software are grouped in two categories, then: (1) cost of failed or incorrect

mission accomplishment, and (2) cost of preventing/identifying/removing errors in the
development process. Software measurement can be used to assist in minimizing the costs

3 associated with (2) above, while vigorous testing and evaluation addresses overall cost of error

minimization.I
SDS development is expected to be phased over many years, with hundreds or thousands

of interrelated tasks to be accomplished. Software development must be accomplished in

accordance with the overall schedule. Without firm monitoring and controls on progress, software

I T
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IU development has the potential for delaying SDS completion by perhaps years. In addition, the

costs associated with these delays could escalate to prohibitive levels.

SDS software measurement, then, has as its goal to: (a) measure the product, and

process, of SDS software development, both to predict results, and to allow feedback and control,

and (b) to achieve a superior product, on time and within budget. The key concept here is

prediction. With accurate prediction early in the software development life cycle, discrepanciesi
between expected and required results can be identified, and appropriate steps taken. Without the

prediction afforded by software measurement, problems will remain hidden longer, requiring

additional resources to resolve. Thus, software measurement is the "early warning system" in the

management of SDS software development.

TASC aA
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2. SDS SOFTWARE MEASUREMENT
NEAR-TERNI APPROACH

This sectior discusses the near-term activities to be undertaken to introduce in a

systematic manner the software measurement process into SDS Software Development. It

summarizes the findings documented in TR-9033-1 and TR-9033-2, and proposes a method for

review of, and concurrence with those findings, by Government and other contractor personnel.

This _.ction also defines an incremental approach to software measurement introduction, using an

initial tailored software metrics program with one or more development contracts. It also includes

a recommendation for experiments.

2.1 SUMMARY OF TR-9033-1 AND TR-9033-2

This section summarizes the findings from Subtasks 1, 2, and 3 concerning measurement

requirements by software application domains, and the models, metrics, tools, and environments

that support those measurements.

2.1.1 Summary of SDS Software Measurement Requirements
(TR-9033-1 )

The work presented in this report was performed under Subtask 1 of Task Order 33 of

the SDIO Systems SETA contract. The purpose of the subtask was to develop SDS software

measurement requirements by identifying the standards and attributes required for SDS software

products and the software development process.

The subtask was broken into three phases. The first phase was a review of standards and

development process relevant to SDS, as they pertained to software metrics. The second phase

was a detailed examination of SDS software characteristics, definition of software domains, and

quality and productivity measurement requirements. The third phase integrated the measurement

requirements identified previously into an approach for the application of software metrics.

TASC - :
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Standards and Process Identification - For purposes of this document, software

measurement is defined as the act of capturing metrics and comparing them to standards. A metric

is defined as a quantitative standard of measurement used to represent and compare some software

process or product attribute. The primary objective of software metrics is to predict, throughout

the development phase of the software, what the quality and overall schedule and cost of the final

product will be. The task began with the identification of potentially relevant standards and

development guidelines. Many were found to be of too high a level for specific guidance, or had

no relevance to software metrics technology. The ones which were found to most directly address

metric requirements were:

a) SDS Software Policy and Management Directive No. 7;

b) DoD-STD-2167A, Defense Systems Software Development;

c) RADC-TR-85-37, Vols. 1, 2, and 3, Specification of the Software
Quality Attributes.

These documents formed the core of the analysis, as they most directly addressed the

development process and the associated software attributes. Integration of software metrics into

the software development process was examined, including both the waterfall development method

and the rapid prototyping development method. While metrics integration with the waterfall

development method was relatively straightforward to define (see Figure 2.1-1, Software

Acquisition Quality Metric Functions), integration with the rapid prototyping development method

(itself not well understood) was not as complete.

Products and Process Attributes - The second phase of this subtask was to define

the software quality and productivity factors relevant to SDS software. This identification spanned

the software development life cycle from requirement definition through operation and

maintenance. For the quality factors, the thirteen factors identified by RADC were examined and
.-- lyzed for applicability to SDS needs. Several were redefined or merged together, to give a new

set of nine quality factors. Productivity factors were also examined, with factors relating to

schedule, budget, and feedback for improvement. Primary sources for analysis were based on

lines of code estimates for software components, or the identification of function points. Both

quality and productivity metrics are believed to be much more accurate when applied against

subsets of "like" software (software domains). Accordingly, the SDS software functions were

categorized and decomposed into 36 SDS software application domains having disti

2-2 A" SrA ,
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measurement requirements (Figure 2.1-2). Each domain was described through the function

implemented, its level of criticality, time constraints, location, size, risk, use, and intended life

cycle, as well as its quality attributes. This division served then as the basis for further

measurement requirements definition.

Methodology Requirements - The third phase of this subtask was to define

methodology requirements for incorporation of software measurement into the software

development methodology. The approach defined was: specification, estimation, evaluation, and

tuning. The specification phase is perhaps the most difficult, requiring negotiation among

developers, users, and contracting agencies to set specific requirements. The estimation phase

uses the appropriate metrics to obtain predicted measures of product and process. Upon delivery,

the user evaluates the actual product, and that evaluation is compared to the metrics predictions.

Finally, the metrics are adjusted as necessary to provide more accurate assessments for future

developments.

Conclusions - There were several major conclusions from this subtask. The results of

the review of available standards reveaied that formalization of the process of estimating quality by

embedding it in the development process is not well-defined. Rapid prototyping, in particular,

must be directly addressed. For the waterfall development, the incorporation process was

identified. A modified set of quality factors tailored to SDS requirements was proposed, reducing

metric application requirements while targeting specific needs. We developed a methodology for

setting quality factors based on SDS software characteristics. The SDS software was decomposed

into 36 software application domains for purposes of measurement application. The concept of

software level to determine the extent of software metrics application was described. Several

promising productivity metrics, were identified, which appear applicable to the SDS software

domains. A four phase methodology requirement of software metrics application was also

developed.
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I QUAUTY ATTRIBUTE

RELATIVE RANKING

2.4.1 DETECT PLUMES H H H H L L L L M

2,4.2 DETECT COLD BODIES H H H H L L L L H

2.4.3 RF DETECT H H H H L M U L M

2.4.4 RESOLVEOBJECTS H H H M L L L L M

2.4.5 DISCRIMINATE H H H M L L L L M

2.4.6 ASSESS KILLS H H H M M M M L M

2-47 CORRELATE H H H H L L L IL

2.4.8 INITIATE TRACK H H H H L L L L M

2.4,9 ESTIMATE STATE H H H H L L M L M

2.4.10 PREDICT INTERCEPT & IMPACT POINTS H H H M L L L L M
2.4.11 INTERPLATFORM DATA COMMUNICATION H H H H L L L M H

2.4.12 GROUND-SPACE COMMUNICATION H H H M L M M LI M

2 411 GROUND COMMUNICATION M M M M M H M H L

2.4.14 ASSESS THREAT H H H L L L L L L

2.4.15 ASSESS SDS H H H L L L L L L

2.4.16 ASSIGN & CONTROL SBI WEAPONS H H H H L L L L M

2.4.17 ASSIGN & CONTROL GBI WEAPONS H H H M LL HL L M

2.A.18 GUIDE & CONTROL ,,BI WEAPONS Hff 71 H H L L L L H

2.4.19 GUIDE & CONTROL GBI WEAPONS H H H M L H L L M

2.4.20 COMMAND ENVIRONMENT CONTROL H M H M M H M L M

2.4.21 CONTROL ONBOARD ENVIRONMENT H H H H L L L L M

2.4.22 COMMAND ATTITUDE & POSIION CONTROL M H M M H M L M

2.4.23 CONTROL ONBOARD ATITUDE & POSITION H H H H L L L M U

2-424 SENSE ONBOARD STATUS H H H M L L L L M

2.4.25 ASSESS STATUS H M H M M H M L M

2.4.26 COMMAND RECONFIGURATION H M H M M H M L M

2.4.27 RECONFIGURE H H H H L L L L M

2.4.28 DEVELOPMENT TOOLS M M M L I M M M M

2.4.29 HWIL SIMULATOR M H H M M M L L M

2.4.30 DEMONSTRATION SIMULATIONS M H M M M M M L M

2.4.31 SUPPORT DEVELOPMENT TEST M M M M H H H H M

2.4.32 PROVIDE DEVELOPMENT ENVIRONMENT H M H M H M L L M

2.4.33 SUPPORT FACTORY TEST M M M L H H H H L

2.4.34 SUPPORT ACCEPTANCE TEST M M M M L U I L M

2.4.35 MAINTAIN & CONTROL MGMT INFO DATABASE M M H M H H H H M

2.4.36 MANAGEMENT INFORMATION TRACKING M L H L H H H H M

03891002-001

Figure 2.1-2 SDS Software Application Domains and Quality Factors
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I Open Issues - One major open issue is the establishment of procedures for audit and

review activities for the rapid prototype development process. After that is complete, then software

metrics application can be integrated with it. A formal methodology for rating quality must be

developed. Without that, unstable metrics models can result. Also, a formal methodology to

I "tune" metrics models must be defined. This includes developing formal quality rating criteria, as

well as guidelines for modifying scores. Without this definition, attempts to "trade off' one quality

factor against another are not likely to provide the desired results. Finally, software reuse must be

aggressively encouraged. Software metrics can provide estimates of software reusabitity, which

can be compared with actual reuse, providing a measure of one of the most promising sources of

cost/schedule reduction.

2.1.2 Summary of Recommended Models and Metrics for SDS
Software Measurement (TR-9033-2)

U The collection of metrics data identified in Subtask 2, TR-9033-2, proved to be both

skewed and elusive. Skewed in the sense that much of the existing metrics information that is

3 found to exist and is formalized via models and mathematical relationships is encountered late in

the life cycle (i.e., occurring in the implementation phase and beyond). Elusive due to the fact that

3 early life cycle (predictive) metrics are virtually non-existent, and when identified, have no formal

foundations (mathematical or relational) to support them for the most part. Furthermore,

3 consensus is still evolving on the valid scopes of specific metrics applications (e.g., complexity).

The metrics which have been standardized by the Air Force and Army for use throughout

the life cycle are a set of primitive indicators and weighted summations for quality and

management control and accounting rather than predictions. Also, productivity models have been3 in wide use, with quite a rich experience base as to fire-tuning parameters; the second generation;

of the Constructive Cost Model "COCOMO" has active user groups. However, one message

3 which should be clear out of this study: each program management shop should establish and

implement its own metrics methods and quality management program and develop its own

expertise with its software measurements and data.

Though there has been no early life cycle predictive model identified, the use of the

AFSCP-800-43, -14 indicators will provide early and consistent software productivity and quality

statistics. When advanced metrics development proceeds newer models can be introduced with anTSPAT

2-6 re ,,- ,, , =- -UONMTO&.
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established SDS software measurement database for subsequent validation. Also in the absence of

an algorithmic, predictive model, a multi-attribute, composite or vector metric representation5 presents a practical approach to communicate and scale an assortment of primitive indicators. This

use of multi-attribute modelling ("fuzzy" and simple) has been recently added to the statistics and

O-R literature and is the subject of the 1990 International Conference on Metrics being held in the

United States for the first time in several years.

il Software Quality and Management Indicators - The review of the metrics

contained in Subtask 2 reveals that no single metric is capable of supporting decisions across an

entire software domain as defined in Subtask 1, TR-9033-1. Each metric supports measurements

in one or two software attributes; e.g., Reliability, Maintainability, etc. The implication here, is

3 that perhaps several metrics will need to be combined to form a composite model capable of

supporting decisions on the 36 SDS subfunctions or the defined software domains. The analysis

concludes that no available metric should be dropped from consideration.

The early use of the Air Force Standard Quality and Management Indicators are

recommended. With the advent of the Software Management and Reporting Tool "SMART", the

collection and management of the indicators will be much more efficient and flexible. Synopses of

the Management and Quality Indicators are presented in Table 2.1.2-1 and 2.1.2-2.

Composite Metrics and Early SDLC Phase Models - TR-9033-2 also proposed

the creation of a vector which could be used to assess the relative strength or weakness of a metric

when it is applied to one of the 36 SDS subfunctions. The analysis concluded that many of the

relative software attributes are not address by any of the available metric models. However, it was

noted that current research is being conducted at several universities, in industry and in

government. The need to address the measurement of software attributes, early in the software

development process, is well known. Several approaches were evaluated during the performance

of Subtask 2. A more recent approach is the use of an emerging class of metrics designated as

multi-attributes or multi-criteria metrics. Work on this type of metric is currently on-going at

3universities, some as close as George Mason University in Fairfax, Virginia.
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Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

1. Computer Resource Utilization (CRU) Indicator:

1.A Metrics Used:

- Planned deliverable resource (Memory, CPU, I/0).

- Minimum (Proposed to be delivered) deliverable resource.

- Actual utilization.

L.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

1.C SDLC:

- Requirements definition phase.

2. Software Development Manpower Indicator:

2.A Metrics Used:

- Planned and actual staff deviation.

- Staff losses.

2.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

2.C SDLC:

- All phases.

3. Requirements Definition & Stability Indicator:

3.A Metrics Used:

- Total number of software requirements.

- Number of untraceable s/w requirements.

- Number of untestable s/w requirements.

• PAIA
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3 Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

3.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

3.C SDLC:3 - Phases : requirements definition, design, test and reviews (i.e. 11R, SRR,

SDR).

4. Software Progress-Development and Test Indicator:

4.A Metrics Used:

For the development progress portion

- CSCI design completion

=(units 100% designed/total units pers CS CI)X 100

- CSCI unit test completion

=(units 100% coded & tested/total units per CSCI)X 100

- CSCI integration completion3 =(units 100% integrated into a CSCI/total units per CS C)X 100

For the testing progress portion

- s/w test successfully completed.
- Problem reports opened.
- Problem reports closed.

4.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

S- Product division.

4.C SDLC:

5 - Design, code, and test phases.

I8 FAl I
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Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

5. Cost/Schedule Deviations Indicator:

5.A Metrics Used:

- Cost variance=BCWP-ACWP.

- Schedule variance=BCWP - BCWS.

S- Cost performance Index(CPI)=BCWP/ACWP.
- Schedule performance index(SPI)=BCWP/BCWS.

- Estimate at completion(EAC)

=ACWP + (BAC-BCWP)/(0.2SPI + 0.8CPI).

- Variance at completion(VAC)=EAC - BAC.

- Percent completed=BCWP CUM/BAC.

5.B Users:

- Development contractors.

- Software development project officers.

- Program managers.

- Product division.

5.C SDLC:

- Reviews at all phases.

6. Software Development Tools Indicator:
I 6.A Metrics Used:

Number of months available from when the tools are required to when the

tools are expected to be delivered.

6.B Users:

- Development contractors.

- Software engineers

- Software development project officers.

- Program chief engineers

- Program managers.

- Product division.

7NJI
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Table 2.1.2-1 AFSCP 800-43 Software Management Indicators

(Continued)

6.C SDLC:
- Probably during design, code, and test phases.
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3 Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

3 1. Completeness Indicator:

L.A Metrics Used:

- Weighted sum of components defined by SDLC milestone delivery schedule

checklists

1.B Users:

- Development contractor's software engineering, test, and quality organization.

- Software development project officers.

S- Program managers.

- Product division.

3 1.C SDLC:

- During dem/val SRR, test phases.

2. Design Structure:

2.A Metrics Used:

Design Structure= w D

Where, w = weight associated with each component (0-1).3 D = Components defined as boolean or scored

rating of structuring policy implementation.32. B Users:
- Development contractor's software engineering and test organizations.

- Software development project officers.

- Program managers.

- Product division.

2.C SDLC:

i FSD (PDR, CDR) and testing phases.

I
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I Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

(Continued)

3. Defect Density Indicator:

3.A Metrics Used:

- (Cumulative defects encountered)/(total number of units per CSCI).
- (Cumulative defects corrected)/(total number of units per CSCI)

3.B Users:
- Development contractor's software engineering, test and quality organizations.

I Software development project officers.

- Program managers.

S- Product division.

3.C SDLC:
I FSD (PDR), and testing phases.

4. Fault Density Indicator:

4.A Metrics Used:

- Cumulative faults (causes of failures) / total number of units per CSCI.

- Cumulative faults corrected / total number of units per CSCI.
4.B Users:3 - Development contractor's coftware engineering, test, and quality organizations.

- Software development proiect officers.
S- Program managers.

- Personnel performing govemment acceptance of the CSCI.

- Product division.

4.C SDLC:
- FSD (CDR), acceptance testing phases.

5. Test Coverage Indicator:

5.A Metrics Used:
- (No. of implemented capabilities tested)/(total required capabilities)X 100%3 - (Software structure tested)/(total software structure)XIO0%

I TASO Ajs112-13IOV- C%
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Table 2.1.2-2 AFSCP 800-14 Software Quality Indicators

(Continued)

5.B Users:

- Development contractor's software engineering, test, and quality organizations.

- Government acceptance personnel.

- Software development project officers.

- Program managers.

- Product division

5.C SDLC:

- Functional and requirements testing phases.

6. Test Sufficiency Indicator

6.A Metrics Used:

- Remaining faults(FR)=(PF - FP)X(UI/UT)

- Maximum tolerance(MAXT)=co (FR)

- Minimum tolerance(MINT)=c o (FR)

Where: 1'F=number of faults predicted.

FP=number of faults detected before s/w integration testing.

UI=number of units integrated.

3 UT=number of units in the CSCI.

FD=number of faults detected to date during test.

B U co, co are maximum and minimum tolerance coefficients

6.B Users:

- Development contractor's software engineering, test, and quality organizations.

- Government product acceptance personnel.

- Software development project officers.

S- Program managers.

- Product division

6.C SDLC:

- s/w integration testing phase.I
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Table 2.1.2-2 AFSCP 800-14 Software Qualit Indicators

(Continued)

7. Documentation Indicator:

7.A Metrics Used:

- Documentation Index(DI)

Normalized Summation of wI x D + w2 x S

where: wI and w2 are the weights associated with the assessments of the documentation

and source listings , respectively.

D is the documentation products.

S is the source listing.

7.B Users:

- Development contractor's software engineering, logistics, and quality organizations.

- Government products acceptance personnel.

- Software development staff officers.

- Logistics staff officers.

- Program managers.

- Product division.

7.C SDLC:

- s/w products acceptance phase.
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3 It should be noted that the result obtained in calculating a multi-criteria metric (i.e., a

single scalar value) provides the same information as a single complexity metric value - of limited3 use. However, it is felt that a composite vector or multi-attribute vector would provide greater

insight into the nature of the life cycle activities when properly instrumented as a result of the

visible vector components or coefficients that are always present or absent in some cases. Such a

requirements maturity or stability vector would be of the form R = Ai+Bj+Ck,

3 where the

- i component represents a traceable requirements activity axis3 (e.g., user, system, performance, derived)

the j component represents a document maturity component axis
(e.g., needs document, draft document, final design spec, draft
final document)

and the k component represents a design review component axis
with related life cyc1" phase information (e.g., system design,
software design, test, or PDR/CDR/FDR states).

3 The attenuation or amplification of the vector components are contained in the matrix

coefficients for i, j, k; A, B, C respectively of form:

I[al I a12 ... aln]

3 [a21 a22 ... a2n]

[amlI am2 ... an]

* Requirements synthesis vectors in the early life cycle development phases prior to

developer source selection activities would be of the form:

R = Ai+Bj
or3 R=Ai

A vector result of one of the latter two types in the development phase, after contractor

selection, would be of immediate suspect and concern to a program manager since the resultant
vector should be of the form Ai+Bj+Ck.

STAART
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I It would be obvious that a development component is missing, possibly as a result of

major problems or exceedingly high resource consumption rates.

This is one approach that appears to shed greater information on requirements stability,

than multi-criteria metrics and is in its early stages of development. Vector metrics can be plotted,

with associated derivatives, to assess work progress or instability points along a critical path.

Constant cost curves or surfaces can be generated by examining vector magnitudes to assist in the

trade-offs of resource consumption and risk. It is felt that a finer granularity can be achieved over

existing cost models with the introduction of vector metrics.

Vector metrics implementation is based on the assumption that predictive measures and

measurands can be identified instrumented and automated via a requirements tool set. One such

tool set can be identified establishing several possible implementations and a potential series of

experiments is with the use of the RVTS tool suite and the predictive measurands identified in

Table 2.1.2-1.

i 2.1.3 Summary of Recommended Tools for SDS Software
Measurements

I The following subparagraphs summarize the findings from Subtask 3 concerning the

tools and environments that support the selected measurement processes and metrics.II
Software Management and Report Tool (SMART) - The SMART package is3 targeted for deployment at the U.S. Army Communications - Electronics Command (CECOM)

July-August 1989. The first program it will be applied on is the Advanced Field Artillery Tactical

Data System (AFATDS).

The software metrics goal is to implement the Software Management and Quality

Indicators as per AFSCP-800-43 and AFSCP-800-14 in an efficient, extensible architecture. The

software metrics indicators and data management will be based on IBM PC-compatible machines

using the popular "dBase3" formats with the "Clipper" data base language system.

The list below shows some of typical project control data used by SMART to collect the

software management and quality indicators.

• PARTA
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OVERVIEW OF SMART SOFTWARE DATA COLLECTIONS

Deviations

Waivers

Software Trouble Reports

Test Incident Forms

Engineering Change Proposals

Software Improvement Reports

Software Discrepancy Reports

Computer Resource Utilization

Software Development Manpower

Requirements Definition ard Stability

Software Progress - Development and Test

Cost/Schedule Deviations

Software Development Tools

Completeness

Design Structure

Defect Density

Fault Density

Test Coverage

3 Software Maturity

Documentation

Statistical Modelling and Estimation of Reliability Functions for Software

(SMERFS) - The Farr and Smith's SMERFS package of reliability models from the Naval

Surface Warfare Center (NSWC) at Dahlgren presents a field tested, efficient tool for the SDS to

use on an interim basis. As the interim use of the SMERFS models progresses, concurrent

validations and research into highly reliable system requirement issues can be used to tune the

models' deployment and to plan for an advanced model. The aspect of applying uncertainty theory

should also be examined during this interim period, so that the potentiality of applied uncertainty

modelling can be assessed.

I
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I SMERFS was developed several years ago as an aid in the evaluation of software

reliability. In its original design it was targeted for mainframe and mini-computer environments.

Since then it has also been adapted to operate on micro-computers, specifically IBM-PC/XT

compatibles.

The current version of SMERFS has incorporated eight software reliability models. The

models include the following: (1) Musa's Execution Model, (2) Goel-Okumoto Non-

Homogeneous Poisson Model, (3) Adapted Goel-Okumoto Non-Homogeneous Poisson Model,

(4) Moranda's Geometric Model, (5) Schafer's Generalized Poisson Model, (6) Schneidewind's

Model, (7) Littlewood-Verrall Bayesian Model, and (8) the Brooks-Motley Model.

SMERFS contains a driver which is claimed to make it machine independent. The driver

is a subset of the American Standards Institute (ANSI) specifications for the FORTRAN 77

compiler. Several user selectable options are available within the driver and allow the system to be

configured to produce: better predictions; output plots and catalogued output files. Currently

SMERFS is operational on three main computer groups at the Naval Surface Weapons Center

(NSWC), Dahlgren, VA. The three computer groups include the CDC CYBER 170/875, the
Vaxcluster 111785, and a large number of IBM-compatible PCs. Dr. William H. Farr, of NSWC,

and Mr. Oliver D. Smith, of EG&G Washington Analytical Services Center, Inc. both claim that

transferring SMERFS to other computers should be very easily accomplished.

Besides containing operating instructions within its interactive mode, SMERFS two

additional pieces of documentation. The two supplemental reports are: (1) SMERFS Library

Access Guide (NSWC-TR-84-371, Rev. 1), and (2) SMERFS User's Guide (NSWC-TR-84-373,

Rev. 1). These two publications allow a potential user to preview the system. Examples are

provided throughout the User's Guide, allowing a potential user to acquire an overview of the

SMERFS processing. In addition, the guide also shows actual software reliability analyses

performed on the CDC CYBER 170/875.

The SMERFS systems show tremendous potential for use in the SDI environment with a

minimum of modification.

I
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ADC Packages AMS, QES, ASQS - These three programs at the Rome Air

Development Center are in different life cycle phases as described.

i Automated Measurement System (AMS) - The Automated Measurement System

(AMS) was developed by the Harris Corporation for the Rome Air Development Center to

implement the RADC Software Quality Metrics as specified in RADC-TR-85-37. The RADC-

Harris goal was to interface with prevalent coding languages (Fortran, Ada, COBOL) and

specification languages (SREM/RSL, SDDL) on a common computer system platform (DEC
VAX, VMS, CMS), written in Fortran, with off-the-shelf (OTS) software reused from prior

RADC and contractor activities.

The development was generally successful with a few significant shortfalls. Particularly,

the following partial language interpretations are reported as disappointments:

I Partial Language Support Percentages

Ada 36%
Fortran 60%

SDDL 46%

SREM/RSL 10%

Verbal reports indicate that the contractors performance testing in regard to the Ada

interface has not been satisfactorily duplicated. The final report indicates an unsatisfactory porting
to an IBM PC/AT of the AMS. Oral reports indicate that the attempt was totally unsuccessful. The

use of AMS by the SDIO for Fortran and some Ada may be helpful in a VAX environment.

I Quality Evaluation System (QES) - The RADC program titled Quality Evaluation
System (QES) is also called "son of AMS" by some RADC staff. This package will be written in
Ada to support both Ada and Fortran applications. The target date is late 1989 or early 1990.

Progress of this package should be tracked by the SDIO.

Automated Specification Quality System (ASQS) - The RADC has begun work

on an Auomated Specification Quality System (ASQS) for early SDLC phase reporting.
Development of this program should be tracked by the SDIO.
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I 2.2 REVIEW OF FINDINGS AND RECOMMENDATIONS

The SDS software measurement requirements documented in TR-9033-1, and

summarized in 2. 1. 1, were developed with an eye toward refinement and expansions. Similarly,

while a vast array of information was amassed and evaluated in completing TR-9033-2, the task

was necessarily incomplete, given the resources available and the constantly changing set of new

products being developed. Therefore, a critical review of these efforts by other knowledgeable

professionals is considered not only prudent, but necessary, to achieve a consensus on the SDS

Software Measurement approach. Another purpose in having review of SDS software

measurement plans is to more closely involve affected participants in the process. Besides having

expert expe: :-nce in diverse areas, many of the reviewers will be involved in initiating the

measurement program and in operating within the requirements of that program. Thus, they will

have the opportunity not only to learn abort requirements that may be imposed upon them, but also

to shape those requirements. This can be a key factor in the early establishment and success of the

program.

IThe review process has the following steps:

a) Identify target review audiences

b) Group attendees for briefings as desired

I c) Prepare briefing material

d) Distribute review material

e) Present briefings and receive immediate feedback

f) Analyze, assimilate feedback

g) Modify SDS Software Measurement approach as necessary

I h) Prepare and distribute specific standards, policies, and plans for
implementation.

I The conclusions contained in TR-9033-1 and TR-9033-2 should be distributed to

"interested parties" in the field of SDS software development. They would include: a) the SE&I

contractor; b) Software Center personnel; c) SPO personnel; f) procurement personnel; g)
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software tools and environment developers; h) software measurement academicians; and i) others

as deemed appropriate by SDIO.

I While not all the reviewers would be interested in all aspects of the reports, the analysis

and reasoning in the technical reports would be useful in providing a good background for review.

For example, a software measurement academician would primarily be interested in the

measurement approach and metrics models; however, the identification of the 36 SDS software

application domains would be useful information to know, as domain definition is an integral part

of our approach.

The reviewers should concentrate on the following areas, with emphasis on areas that
i directly affect them:

a) The proposed software typing scheme and resultant candidate generic
software domains;

b) The relative importance of the software quality factors within each

domain;

c) The proposed baseline methodology for setting specific goals or targets
for software quality factors;

I d) The metrics models and tools designated as appropriate for each domain
and factor or attribute; and

Ie) The proposed application and feedback processes for measurement of

the SDS software.

The reviewers could potentially contribute substantially to the successful definition and
use of software measurement in SDS, given that they may have a narrower, but deeper, experience

base (e.g., the BSTS contractor, in BSTS software functions). Also, with a good understanding

of the measurement program, more volunteers for pilot experiments would be likely.

I The material to be reviewed (either existing documents or abstracts) should be distributed

to the reviewers in the near future. Concurrent with the distribution, SDS Software Measurement

briefings should be developed and given to the reviewers. This approach allows tailoring of the

material to a specific audience. For example, briefings to academicians might concentrate on the

i models chosen, while briefings to major component contractors would emphasize the development
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I of the SDS software application domains. Tailored briefings also allow for receiving immediate

verbal feedback. Without the briefings, written feedback, possibly weeks or months later, could

be the only response.

Alternatively, if the number of briefings required to address each review group is deemed

excessive, briefings could be combined to address several, or perhaps all, reviewers at one time.

3 A simple briefing session (2-3 days) would require considerably more organization time, and

probably lead time as well, but would have the advantage of each review group hearing first hand

the comments and ideas of the other reviewers. In addition, while set up time would be increased,

the overall time to distribute material, present the briefings, and receive feedback could be less than

that necessary if multiple, targeted briefings were given. As noted above, one of the key review5 areas is the set of tools and software metrics appropriate for a project. To better acquaint the

audience with the process, a step by step presentation of setting the software measurement goals

for a project, and determining the measu m ents to be taken, should also be given. This is a

particularly recommended approach.

Following the briefing(s) and review comments assimilation, the comments should be

reviewed for possible incorporation into the SDS Software Measurement program. Software

domains should be refined in light of the then-current understanding of the systems functiol s.

Quality factor rankings should be adjusted as necessary, and the software measurement toolset

specified. The modified standards, policies, and plans should receive wide distribution, and

implementation should begin. We recognize that this is not a one-time effort; it will continue

3 throughout the development effort. However, it is necessary to assemble the program with best

and most complete information available at that time, and get it started. Otherwise, a fragmented

and partial approach, at best, is the likely alternative.

E 2.3 DEFINITION AND DEVELOPMENT OF MEASUREMENT SYSTEM

Just as it is very important to get the SDS Software Measurement Program off to an early

start, so too should the Measurement System that implements the models and software metrics of

the iF;ogram be initiated immediately. Initially, the Measurement System will be less a complete

system than a collection of selected tools as identified in Section 2.1. The emphasis is on off-the-

shelf availability, with the more mature tools given preference over beta-release products. Other

TASC' PAJTA
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m than perhaps some tailoring of the tools to the SDS Software Development environment, no

extensive development effort should be initially undertaken. Experience must be gained with the

iinitial toolset before major additional system enhancements are initiated.

Enhancements will be identified through two parallel paths. First, the gaps identified in

TR-9033-2 for tools support of quality measurements must be filled. Those cases where a metric

is identified, but no tools implements that metric, should be addressed first. Here, the

requirements are more completely specified, and near term system improvements are more readily

achievable. For those cases where a measurement requirement has been identified, but no

approach has been identified or found to be acceptable, additional research will be necessary (see

Sections 3.1 and 3.2). Priority for development of software metrics tools should be given to those3 metrics which are associated with quality factors ranked "High", "Medium", and "Low", in that

order.

The other source of system enhancement requirements is that resulting from use of the

measurement system. Following its initial definition, users of the system will identify areas of

improvement. Some expected areas would be: a) user interface; b) integration of tools; and c)

performance. Integration of the toolset and performance would be particularly critical areas for

improvement. If the tools comprising the Measurement System are not well integrated, require

duplicative data gathering, or wok at cross purposes, resources will be wasted. Of paramount

importance, if the tools themselves do not produce the results expected, they must be revised and

improved as soon as possible. Otherwise, the Measurement System's value would be

3 questionable.

As noted in TR-9033-2, most metric tools available today deal with the later parts of the

development life cycle (i.e., code). Given the emphasis on the value of predictions of SDS

software quality and process factors, automated support for evaluating activities earlier in the life

cycle is essential. Thus, while the initial focus of the Measurement System will be on the code
itself, the early enhancements should also concentrate those tools that aid in early evaluation,

controlling, and predicting of software characteristics. These early qualitative enhancements

(spanning more of the development process) may well be more valuable than quantitative

enhancements (a deeper or different view of a particular measurement).
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2.4 SELECTION OF PILOT CONTRACTS

Given the embryonic nature of the SDS Software Measurement Program, it should not be
imposed across all on-going and future software development efforts without initial tryouts. It is

important to gain experience with the program under controlled circumstances prior to full-scale

introductions. Volunteers should be solicited from among those participating in the Software

Measurement Program review. To gain initial experience, a few (two or three) software

development efforts should be picked for introduction of the Software Measurement Program.
These efforts should be: a) relatively small; b) well-defined; and c) of short duration. Efforts

with these characteristics should be picked to allow for rapid assessment of results, and

minimization of outside influences.

As noted in TR-9033-1, the software measurement process should be tailored to each

specific effort. Initially, the software quality specifications should be defined. This is a

cooperative effort among the developer, users, the System Program Office, and quality assurance

personnel. Out of this effort is accomplished: a) software criticality definition; b) technology risk

assessment; and c) software quality criteria and targets specification. The software product must

be assigned to the appropriate software domain, and the associated quality and productivity

requirements defined, and refined, as appropriate.

Following the definition and ranking of the quality factors, the appropriate software
metrics models and tools would be selected from the available set for application throughout the

development process. The contractor then would initiate development, integrating the selected

metrics tools and procedures with the development process. The reports and analyzes output from

the measurement system would then be reported on at the appropriate points in the review process,

allowing for continuing assessment of the software. As results become available, they could be

compared with the objectives set during development initiation. Deviations from objectives would

be noted, explained, and appropriate action taken to adjust either the objectives, the development

process, or both. This process of continuing monitoring, assessment, and adjustment would

continue through the life cycle until product delivery. At that time, direct user assessment of the

developed system would be compared to the predictors which were developed from application of

the software development process. From this comparison, the value of the software measurement

process in providing accurate predictors of software attributes would be determined.
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3 It is from this initial application of the Software Measurement Program in the "real-

world" that will give SDIO the feedback necessary to determine the future course of the

3 measurement effort. If the results reasonably meet expectations, then additional contracts should

be selected for use, and the effort expanded. If, however, the results are not particularly good,

then either modifications to the Software Measurement Program must be made, and initial trials

re-executed, or the utility of the entire effort may be questioned.

I In order to provide a high degree of control and consistency of results in the initial trials,

it would be advisable to have the Software Center administer the Measurement Program. As the

probable repository of the complete set of tools and environments, they would have the expertise

and resources necessary to support the software measurement program's introduction.I
2.5 EXPERIMENTATION AND FEEDBACK

I Specific experiments to be undertaken include primarily those which address

measurement of the software development process. Prediction of size, cost, and schedule are most

readily undertaken, and would likely produce the most unambiguous results. Experiments with a

COCOMO-based system and SOFTCOST-Ada are recommended for schedule and cost.

For experiments with software quality, software reliability is the factor is best covered by

existing metrics. Experiments with SMERFS are recommended to get reliability predictions.

3 The above experiments should either be performed by the Software Center or by the

contractors selected for initial Software Measurement trials.

I
I
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3. SDS SOFTWARE MEASUREMENT
FUTURE APPROACH

This section discusses activities which should be undertaken in the longer term to provide

for continued improvement in the SDS Software Measurement process. Key among these are:

a) continued development of models and metrics

b) data collection and experimentation to validate models and metrics

c) development of comprehensive measurement methodology

d) integration of measurement with the SDS software development process

e) definition and development of automated tools and databases.

3. I SOFTWARE N1ODELS AND METRICS DEVELOPMENT

There should be a two pronged evolutionary approach to develop the SDS Software

Models and Metrics consisting of the following activity groups of equal value:

a. Applying currently available models.

b. Software Metrics Requirements R&D.

3.1.1 Evolutionary Development

An evolutionary approach is typically used when the knowledge base must mature to

achieve both long-range and intermediate objectives. These objectives are:

a. To develop the SDS software metrics management and validation data
through state-of-the-art experience with off-the-shelf (OTS) package
applications.

b. To feed-forward management evaluations and validations into the future.

c. To develop advanced SDS reliability models including factors for
subprototype replacement, Ada packaging architecture and functional
criticality and tolerance.

d. To develop appropriate models for SDS Integrity, Portability, Usability
and Reusability.

TASC 1Ar,
~~DSA

3-1 1 F ok~SrA TO SD-



I
THE ANALYTIC SCIENCES CORPORATIONI

i e. To develop composite metrics with meaningful weightings and/or vector
presentation.

These objectives are approached by means of short-range and long-range activity groups
which must interrelate. The short-range activities must feed-forward experience and evaluations.

The long-range activities must provide refinements and validations to the day-to-day activities to

promote accuracy and effectiveness.

Figure 3.1-1 shows an overview of the activity groups.I
3.1.2 Short-Range Activities

The short range activities are needed to provide control and a basis for validations. As

discussed in TR-9033-1 and its related briefing, the application of the Air Force Quality and

Management Indicators appear to be a simplistic approach to tracking quality and productivity, but
will provide a controlled footing for the program. Soon with the advent of the Software

Management and Reporting Tool "SMART", the deployment and use of the indicators can be

efficiently managed.

Figure 3.1-2 summarizes the short-range activities.

Software Indicators for Preliminary Data - The early use of the software

management and quality indicators will provide a beginning for the SDS software database. The

efficient application of the Air Force pamphlets, with contractual/SOW enforcement for the data

collections will start to build the productivity and quality control data needed for early management

control. More importantly, this early step will provide a basis for the preliminary validations of
assessment models.

As experience builds, adjustments to SOWs should be planned for additional and refined

data collections.
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SHORT-RANGE LONG RANGE

" Software Indicator Applica- o Full Requirements,otion Life Cycle Modeling

o Build SDS Software Database o Advanced Reliability

o Develop metrics management Modeling

o Make preliminary predic- Integrity, Portability,

tions/assessments Usability, Reusability

o Develop validation capability o R&D for Composite

o Pilot Requirements Model Metrics

Feed forward experience data

Incremental R&D results

Figure 3.1-1 Short- and Long-Range Activities
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U

I Indicator Application - Make Preliminary Predictions
Apply AFSCP-800-14,-43 Using Available Models with
Indicators SDS data and Pilot SDS-like
(with SMART) and data
Pilot Requirements ModelI

I
Build SDS

Software Database

Adjust Validation Capability Adjust3 Data Validate Preliminary Models
Collection Assessments and Define Pilot
(Metrics Predictions RequirementsU Management) Model

I Figure 3.1-2 Short-Range Activities

I Build SDS Software Database - As soon as practical, the development of an SDS

software database should be started. A good starting basis is the data tracked by the indicators

package Software Management and Reporting Tool "SMART". A preliminary checklist of

software data elements from the early phases of the SDLC is presented in Table 3.1-1.
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Table 3.1-1 Preliminary Requirements and Early SDLC Measurands

1 1. Requirements Maturity/Requirements Specificity

2. Level (e.g., System, Subsystem)

3. Stability/Arbitrariness

4. Increment Tools Existence

5. Functional Coupling Rating (Functions Mapped to Requirements)

6. Derived Requirements Coupling

7. Requirements Traceability Matrix (yes or no)

8. Traceability Rating (scored or descriptive)

9. Requirements Tools Deployment

10. PTRs/DTRs Opened/Closed by Period

11. User Qualification/Validation Ratings

12. Ratio of Validated Requirements to TBDs, Unknowns and

Preliminaries

13. Prototype or Production

14. IV&V Verification Ratings of Functional Definitions

15. Development, QA & IV&V Staffing Actual/Budget Ratios

16. System Spec. Maturity Score

17. ROC/SOW Mapping Scores

18. Percentage Replacement/New & Reuse/Unique

19. Development Environment Completion Rating

20. Conflicting Requirements Weighted Scoring

21. Support Requirements Maturity & Completion

22. Requirements Change Drivers

TASC R
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i Preliminary Predictions - In parallel with the deployment of the software quality and

management indicators and database development, the program should start the preliminary use of

available models. The early use of the Statistical Modeling of Reliability Functions for Software

(SMERFS) eight models with SDS data and with borrowed data from similar projects will provide

the type of practical experience needed for later refinements and validations. Also, the use of the

SECOMO and REVIC project schedule and cost modeling packages will provide management with

3 !pilot experience needed to develop an efficient management and control organization.

Both the cost/schedule data with COCOMO/SECOMO/REVIC and the reliability data

with the reliability models should be organized and preserved for subsequent validations and model

refinements.

Preliminary Validations and Adjustments - Based upon the developing database

of SDS software data, the preliminary predictions and assessments can be validated. This activity

of preliminary validations may have to continue using borrowed data until enough SDS data are5 collected but the "learn as you go" aspect of software metrics application must be duly considered.

Pilot Requirements Model - As a necessary aid to provide a timely foundation for

structuring early measurands from the SDS life cycle, a requirements model has been proposed.

Figure 3.1-3 presents this model.

This proposed requirements model is identified that can also serve as the front-end to

whatever life cycle model is subsequently developed consistent with Mil-Std-2167A. The

requirements model can serve to establish formal relationships between measurands and be used to3 establish formal metrics in assessing development risk, and predicting cost/schedule effectiveness.

I
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9(Conceptuai) R(System Definition) R(Derived, Design)

R(Generator) RlSynthesis)

User Prototypes Formal Prototypes

R(Support, Reuse)

Figure 3.1-3 Pilot Requirements Model

3.1.3 Long-Range Development

As the experience and database with the available models and metrics matures, the

importance of advanced models with actual SDS factors and criteria grows. The activities planned

for long-range development are:

a. Full SDS Requirements Modeling

b. Advanced Reliability Modeling

c. Survivability, Integrity, Portability, Usability and Reusability Modeling

d. Composite Metrics Modeling

These activities are discussed in the following paragraphs.
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Full SDS Requirements Modeling - This activity will start with the pilot

requirements model and use a formal method to represent the SDS. This model should be readily

extensible into the software architecture and detail design. The model should include the attributes

presented in Table 3.1-2.

The pilot requirements model proposed (Figure 3.1-3) has a robust set of requirements

generators and the ability to serve as the front-end to diverse types of life cycle models (iterative

and non-iterative). The model allows requirements parsing to enable the proper allocation and

instrumentation of requirements for subsequent metrics measurements and assessments. Several

dozen newly identified measures and measurands (Table 3.1-1) have been identified. These are

categorized as predictive measurands and are intended to provide early visibility into requirements

synthesis, maturity and stability. The latter two are identified as predictive indicators that can serve

to establish acceptable threshclds capable of supporting design. The identification of too many

unstable and immature requirements preclude design activities, increases development risk and

creates an incomplete design envelope).

To support the model, it is also proposed that formal mathematical relationships between

model components be identified. An initial attempt at formal mathematical relationship has been

accomplished in conjunction with George Mason University.
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Table 3.1-2 SDS Requirements Model Attributes

Multi-level Requirements Identification -- Computer-assisted requirements identification in a

separable document basis.

Iterative Requirements Accounting -- Computer-generated matching of low-to-high with high-to-

low trace completion reporting.

Incremental Baseline Reporting -- Computer-assisted baseline identification with computer-

generated baseline accounting.

Full Real-Time, Data Driven Requirements -- Computer-assisted definition of all required timing

constants, data paths and anticipated control paths with computer generated diagnostics and data

dictionary.

Hierarchical Decomposition of System Elements -- Computer-assisted hierarchy definition;

computer generated hierarchy reporting.

User-Efficient, Secure Storage and Retrieval -- Easy to use menus, helpful messages, meaningful

diagnostics with fully supported configuration management.

Functional Simulation/Modeling -- Through computer workstation generated database of the

system functions - computer-assisted system modeling and simulation studies.

Document Generation -- Computer workstation generation of system functional documents.

Ada Language Orientation -- Computer generated prototype code or computer-assisted integration

of design and code elements with requirements and design specifications.

Life Cycle Meta-Model - A life cycle meta-model (Figure 3.1-4) is required to

support the coupling of the requirements model with prototyping and reuse life cycles, as well as

technology or automation-based paradigms. The life cycle meta-model is proposed to illustrate a

feasible approach to support the various types of development approaches (e.g., evolutionary,

incremental, software first). The meta-model is intended to provide the framework for the

measurement of productivity, the identification of associated products relative to the measurement

of processes, and the elaboration of new design review form factors.
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I . .. ... .. . -..
Requirements Hardware

Domain Engineering
Domain ....__ -_

Engineering

Doinrn Post-Deployment
Domain

Softw are I____________________________
Engineering

Domain

Figure 3.1-4 Life Cycle Meta-Model

The life cycle building blocks of Figure 3.1-4 are used to map phases of one life cycle

form into another, similar to that accomplished in TR-9033-2 for different waterfall models and

variations. The model is also required to assist in the association and parsing of categorization data

of Table 1.6-6 of report TR-9033-2 across the resulting new life cycle phases.

Advanced Reliability Modeling - TR-9033-2, Paragraph 4.2 described potential5 shortfalls in available reliability models for the SDS. In particular, the lack of criticality factors and

the treatment of all defects as unpredictable were discussed. On a positive note, Paragraph 1.1.6

3 of that report relayed recent extensions to domain-based model to include the notion of error

tolerances in user service. Further development to include scored tolerance would also include

g the concept of criticality (lack of tolerance).

In a recent article, Jeanette Wing and Mark Nixon have forecast that further extensions to

the "Ina Jo" formal specification language may include properties such as "fault tolerance,

reliability, performance and real-time behavior." These extensions may be applicable for the SDS

I reliability, survivability and integrity modeling.
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3 Another valuable extension for SDS is to add software metrics data instrumentation to a

formal design language (e.g., "IORL" from Teledyne Brown Engineering), and then use SDI3 project data (such as SIE and N-SITE) to make experimental coupling and complexity

assessments, and selected predictions. The experimental data can be used to generate preliminary

3 norms for SDS predictions and assessments.

Survivability, Integrity, Portability, Usability, Reusability Modeling -

These factors require fresh development. Each of these areas was determined to be poorly

supported by metrics without formal models, (as represented by TR-9033-2 Appendix B charts 01-

36).

5 Research into these models should be promoted as feasible with priority upon

Survivability, Integrity and Reusability.

Composite Metrics - The development of multivariate vector metrics has been applied

to the field of general systems optimization modeling.

3.2 VALIDATION OF ADDITIONAL MODELS AND METRICS

The development of new and refined models sets the basis for requirements for a5 validation testbed or suite consisting of: a) validation methodology base, b) SDS software data and

selected test data, and c) a validation tool set. The validation base should provide refinements

3 guidance to further development.

3 3.2.1 Validation Methodology

The first part of the validation suite is the methodology base. These are at least two

exemplary studies providing guidance for software reliability validations Abdel-Ghaly, Chan and

Littlewood compared the predictive quality of ten reliability models using multiple criteria (u-plot,3 y-plot, scatter plots, noise measures, and Prequential likelihood). John Bowen ran goodness-of-

fit "GOF" convergence and reasonableness tests upon the eight reliability models in the SMERFS3 package. These statistical examples should serve as starting methods for the validation

methodology.
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I

Prior studies of complexity models also must be considered with the SDS metrics

validation methodology. Virginia Gibson and James Senn used simple comparisons to rank six

different complexity models. John Stephen Davis and Richard J. LeBlanc conducted tests of nine

different complexity measures using three different programming environment databases. Dennis5 Kafura and Geereddy R. Reddy used simple comparisons to study seven different complexity

models.

By establishing an eclectic, extensible methodology, the cost of methodology

development can be kept low and yet the responsiveness to the validation task can be ensured.

3.2.2 SDS Software Data and Selected Test DataI
Initially the data io use for validations may be obtained from SDI rapid deployment3 experiments (e.g., SIE and N-SITE). Additional project data may be borrowed from the Rome Air

Development Center (RADC) the Joint Surveillance System (JSS), the Naval Underwater Systems

Command (NUSC) or other defense systems agencies with similar programs.

Later, as the SDS preliminary application of metrics proceeds, the database will contain

prior SDS software metrics life cycle phase data (e.g., error rates, productivity levels).

3.2.3 Validation Tool Set

Two widely used statistics packages are SPSS and SAS. Either offers a PC-based

version with interfaces to mainframe services. Alternatively, a basic spreadsheet package like

"Lotus 1-2-3" or "Excel" provides a simple tool set to make iterative comparisons of test data and

statistical derivations.

Either the statistical packages or the spreadsheet packages have graphics capabilities. The

former packages produce selected statistical functions much more effectively, but the spreadsheet3 packages can make most types of popular graphs (pie, bar, line, etc.).
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3.3 COMPREHENSIVE MEASUREMENT METHODOLOGY DEVELOPMENT
AND INTEGRATION

I Section 3.0 of TR-9033-1 documents the methodology requirements for software

metrics. The initial methodology requirements presented there emphasize the need for early

introduction of softwaie measurement in the software development life cycle. Just as important,

the software measurement process should not be "tacked on" to the development methodology, but3 integrated with it. Inherent in the integration of the software measurement methodology with the

software development methodology are well-developed review poiits. With the information3 presented at these review points, not only can redirection of design be undertaken, but also

redirection to meet quality goals.

U With the above points ii mir.- the following tasks need to be completed:

a) Definition of a standard prototyping methodology for SDS software
development.

b) Integration of the standard prototyping methodology with the Software
Measurement Program.

c) Development of a standard methodology for rating quality.

d) Development of a standard software metrics model "tuning" methodology.

5 e) Development of a standard metrics selection methodology.

It is envisioned that prototyping activities (including Rapid Prototyping) will be a vitally

important component of SDS development. Today, the prototyping approach is not well supported

by standards and guidelines, as is the classic water fall development process. Standards and3 guidelines are necessary to specify the objectives of each development phase, as well as the

corresponding audit and review activities. As noted in TR-9033-1, prototyping comes in at least

5 two types: Throw-away, and Evolutionary. Both types, and intermediate variations, must be

accommodated. Specifically to be addressed is the consideration that contractors may already have

differing prototype approaches in place, and may be reluctant to change them.

As part of defining the prototyping methodology for SDS, software metrics should be

included. The integration would provide a methodology analogous to that for the waterfall model.
with software metrics auditing and review activities occurring concurrently with standard audit and3
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review activities. One of the intriguing software metrics proposed is a metric that predicts when

prototyping will be complete, and further iterations or modifications to the prototype are no longer

necessary ot cost-effective.

Current approaches to rating the quality attributes of a software product, including those

for the rating criteria, are poorly defined. To achieve uniform ratings among different users, and to

obtain ratings which are reliable measures of the extent to which a software product meets its

quality requirements, a well-defined rating methodology is necessary. It is also required for tuning

the quality metrics, so that their predictive capabilities can be made as accurate as possible.

The validation of software metrics require that they produce outputs, or scores, which

can predict the quality rating of the final product with acceptable accuracy and consistency.

Validation of a software metric is complex, and requires tuning the model to improve its predictive

accuracy Lntil it is acceptable. This tuning process must be repeated across each individual

software domain. Because tuning could require modification of literally hundreds of different

elements, metrics, criteria, rankings, etc., possibly in combination, it cannot be accomplished by

any straightforward method. It is therefore necessary to establish a methodology for softw, arc

metrics tuning so that convergence to a stable configuration of the metrics can *. achieved as

expeditiously as possible. The methodology may be both analytical and experimental. Analytical

methods may be used for identifying strategies, based on the analysis of the correlations among the

quality factor scores, the quality ratings, the applicable metrics, and metric elements. Experimental

methods would be used to analyze the effects of the tuning strategies on a variety of software

programs within the same software domain. Selection of the tuning strategies may be based on:

a) analytical methods;

b) random searches in the metrics space;

c) past experience.

When a development effort is begun, the selection of the appropriate quality goals,

factors, rankings, and tools could be a daunting prospect. Consequently, the guidelines and

recommendations for approaches documented in TR-9033-1 need to be formalized into a system

that will aid in the selection of the proper software measurement parameters. While the system

should eventually be automated, even a manual implementation of a selection methodology would
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I be a significant step forward. The methodology would guide the user in first setting the

appropriate quality goals for the development. It would assist in determining the software3 domain(s) in which the development best fits. Through analysis of criticality level, and tradeoff of

related software metrics, the system would help the developer in defining a baseline set of software

3 metrics for his use. While such a system would always require final determination of the

selections based on overall considerations, such a formalized approach would remove much of the

3 guesswork from the software metrics selection.

3.4 DEFINITION AND DEVELOPMENT OF AUTOMATED TOOLS
S34 AND DATABASES

The process of tailoring the selected tool packages (SMERFS, SMART, SECOMO3 and/or REVIC) into a smoothly operated, user-friendly management environment is described in

this section.

Figure 3.4-1 presents an overview of the activities to develop (or later, enhance) the tools

3 environment.

3.4.1 Tool Acquisitions and Installations

Each of the tools must be properly acquired and insta!led. Specific setup procedures5 must be checked. Options must analyzed. Alternative installation sequences should be tested.

This step can be ad hoc based upon tool and resource availabilities.

A tentative order to bring in tools is:

5a. SMERFS

b. SECOMO or REVIC

c. SMART

5 d. AdaMat or AdaCAT

e. OthersI
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SMERFS
SECOMO
REVIC TOOL ACQUISITIONS
SMART AND INSTALLATIONS
ADAMAT, ETC.
PC-DBMS
PC-SPREAD

TOOL PROTOTYPE
USE & EVALUATION

TOOL INTERFACE AND
DATA BASE ANALYSIS
(IF APPROPRIATE)

ENVIRONMENT,
PROCEDURES, SHELL
MAINTENANCE
SPECIFICATION

PROCEDURES SHELL/COMMAND
DEVELOPMENT FILES DEVELOPMENT UTILITY DEVELOP-AND TESTMETADES

USER
ENVIRONMENT
TESTING &
ACCEPTANCE

Figure 3.4-1 Software Measurement/Environment Tool Development Activities
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1 3.4.2 Tool Prototype Use and Evaluation

3 As each tool is successfully installed, it can then be scheduled for prototype use, data

acquisition and evaluation with sample SDS data. For some tools, e.g., SMERFS, it may be3necessary to borrow or fabricate test data. For others e.g., SECOMO/REVIC live data may be

applicable.

A preliminary use and evaluation method will be drafted for SMERFS, SECOMO/REVIC

and SMART. Later this method will be reviewed for expansion or revisions. Some preliminary

evaluation criteria include:

a. Tool input requirements availability

b. User friendliness

c. Report readability

d. Processing cycle responsiveness

e. Adequacy of data integrity controls

Based upon the specific evaluations for each tool, selected utility command files and/or

utility programs may be indicated. For example, the SMERFS package provides subroutine

interface descriptions to allow a tailored user-specific executive. Alternatively, the off-the-shelf.

Executive may only require its incorporation within a menu-based software selection package like

MicroSoft Windows or a customized menu written in Clipper, dBase Pascal or C.

3.4.3 Tool Interface and Database Analysis

For those tools requiring selected enhancements, one or more of the following may be

required:

a) Command & Parameter Analysis -- a very simplistic analysis for program
package which can be driven from a menu handler.

b) Program Interface Analysis -- a more intense analysis to build or adapt an
executive module or a low-level hardware driver to new user or hardware
demands.
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c) Database/File Format Analysis -- a moderate analysis to develop or
enhance data extraction services downstream of a package (e.g., SMART
to Lotus or to Excel).

3.4.4 Environment, Procedures and Shell Maintenance or SpecificationI
This activity initially may be a modest programming activity to install a menus package.

Later, when it becomes necessary to add tools or to adjust the tool selections, the changes should

be very brief to make and document.

3.4.5 Procedures Development

As each tool set is integrated into the software metrics environment, the set of user

procedures should be drafted. As each tool becomes used, the procedures should be reviewed and

3 revised if needed.

I 3.4.6 Shell Command Files Development and Test

The computer commands to provide user efficiency and smooth integration must be built

and tested by technical support staffs. The data used to test each tool should be preserved for user

tutorial sessions.I
3.4.7 Utility Development and TestI
As appropriate, utility programs should be coded in a popular language like Turbo Pascal

3 or Turbo C. Simple testing should precede complex tests.

3 3.4.8 User Environment Testing and Acceptance

After each of the models has been unit-tested with its applicable adaption data, the total

3environment must be addressed. The users will be asked to pass judgement on the smoothness of

program initiation and execution.

I
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